New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis
نویسندگان
چکیده
The structural characterisation of nanoporous carbons is a challenging task as they generally lack long-range order and can exhibit diverse local structures. Such characterisation represents an important step towards understanding and improving the properties and functionality of porous carbons, yet few experimental techniques have been developed for this purpose. Here we demonstrate the application of nuclear magnetic resonance (NMR) spectroscopy and pair distribution function (PDF) analysis as new tools to probe the local structures of porous carbons, alongside more conventional Raman spectroscopy. Together, the PDFs and the Raman spectra allow the local chemical bonding to be probed, with the bonding becoming more ordered for carbide-derived carbons (CDCs) synthesised at higher temperatures. The ring currents induced in the NMR experiment (and thus the observed NMR chemical shifts for adsorbed species) are strongly dependent on the size of the aromatic carbon domains. We exploit this property and use computer simulations to show that the carbon domain size increases with the temperature used in the carbon synthesis. The techniques developed here are applicable to a wide range of porous carbons, and offer new insights into the structures of CDCs (conventional and vacuum-annealed) and coconut shell-derived activated carbons.
منابع مشابه
Relationship between 13C NMR Parameters and Antimalarial activity of Cryptolepine Isosteres
Density functional theory calculations were applied to investigate 13C Chemical Shielding (CS) tensors in cryptolepine (1) and its sulfur (2) and oxygen (3) isosteres. The results showed that the CS of carbon nuclei in these compounds may be divided into three types. First, carbons type α,are those directly bonded to X (X= NH, S, O) and σ 33 shielding component of these carbons are deshield...
متن کاملNatural Bond Orbital (NBO) Population Analysis of Iridabenzene (C5H5Ir)(PH3)3
The molecular structure of iridabenzene (C5 H5 Ir)(PH3 )3 was calculated by the B3LYP density functional model using LANL2DZ basis set for Ir and 6-31G(d) for other atoms. The results from natural bond orbital (NBO) analysis have provided new insights into Ir–ligand bonding, the hybridization of atoms and the electronic structure of the title molecule. The NBO calculations show that σ(Ir-C2) bo...
متن کاملExploring electrolyte organization in supercapacitor electrodes with solid-state NMR.
Supercapacitors are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions. Insight into the molecular mechanisms at work inside supercapacitor carbon electrodes is obtained with (13)C and (11)B ex situ magic-angle spinning nuclear magnetic resonance (MAS-NMR). In activated carbons soaked with an ele...
متن کاملAlkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products
In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...
متن کاملAlkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products
In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016